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From many experiments with mixtures of small and large particles, it can be concluded
that during liquid phase sintering, smaller particles partially dissolve and a solid phase
precipitates on the larger particles. Therefore, the number of smaller particles decreases
due to coarsening. The growth rate can be controlled either by the solid-liquid phase
boundary reaction or by diffusion through the liquid phase. This dissolution-reprecipitation
process leads to further densification by rearrangement of smaller and larger particles.
The microstructure may change either by larger particles growing during the Ostwald
ripening process or by shape accommodation. In this study, two-dimensional
simulation of grain growth by grain boundary migration based on such a physical and
corresponding numerical modeling of liquid phase sintering was considered. The
simulation method developed is based on the defined submodels for model system
definition, for solution-precipitation, and for grain coarsening process.
C© 1999 Kluwer Academic Publishers

1. Introduction
Numerous researchers have studied liquid phase sin-
tering during the past few decades, beginning with
Lenel [1]. In particular, there are a large number of
theoretical and experimental studies of grain growth.
Liquid phase sintering is an important process for the
production of many ceramic materials. One important
aspect of its application is that it enhances densifica-
tion and affects microstructural development. The main
characteristic of this process is that the composition of
the powder and the firing temperature must be chosen
such that a small amount of liquid forms between the
grains. Accordingly, the powder compact must satisfy
three general requirements: (1) there is a liquid phase
at the sintering temperature, (2) the solid phase is solu-
ble in the liquid, and (3) the liquid wets the solid. This
process is especially important for systems that are dif-
ficult to densify by solid state sintering or when the use
of solid state sintering requires high sintering tempera-
tures. Unfortunately, the liquid phase used to promote
sintering in most cases remains as a glassy grain bound-
ary phase that may lead to a deterioration of materials’
properties.

A particularly interesting approach which leads bet-
ter understanding of liquid phase sintering phenom-
ena is the application of numerical procedures, because
they have great flexibility and can be used to obtain
solutions for any model system configuration. In re-
cent years, a range of computer simulation models have
been developed with the aim of simulating the detailed
evolution of microstructure during grain growth. Re-
cently the results of a computer simulation of bound-

ary migration during liquid phase sintering have been
reported [2]. This paper describes the computer-based
simulation method that has been developed for deter-
mination of a qualitative and a quantitative effect of
a moving grain boundary on the solid/liquid interface
during liquid phase sintering. The grain boundary mi-
gration means that solid atoms that are dissolved on one
side of the boundary transport across the liquid layer
and deposit on the other side of the boundary.

2. Process modeling
Generally speaking, the liquid phase sintering is viewed
in terms of three overlapping stages: particle rearrange-
ment, solution-precipitation, and Ostwald ripening.
However, each stage is identified by the dominant
mechanism occurring in that stage. Our theoreti-
cal analysis assumes a numerical definition of sub-
models for initial model system definition, solution-
precipitation process, and grain coarsening process and
their successive realization during process simulation.
Note that these processes are not modeled as sequential
events.

First, there must be a mixture of two powders: a ma-
jor component that forms the particulate solid, and an
additive phase as a liquid-producing component. It is
assumed that the liquid wets and spreads to cover the
solid particle surfaces, so that they will be separated by
a liquid layer.

A model system ofN contours (closed boundaries as
two-dimensional (2-D) particle representation) of solid
phase in the liquid represented by spherical particles
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within the smallest enclosing square box, and not al-
lowing the particles to lie outside the square box (rect-
angular domain area× the largest contour’s diameter)
is assumed. This model will be based on the assumption
that there are no pores during liquid phase sintering. In
order to model the system with a large amount of liquid,
the center-to-center approach within a distance` (the
minimal thickness of the liquid layer) is not allowed
(i.e., contour–contour interactions are removed).

The model system contours can be represented as an
array of moving points, using the boundary points of
contours (sites located on the contour boundary or on
the phase interface):

Ds = {
Rs; r s

1, r s
2, . . . , r s

ns

}
(s = 1, 2, . . . , N)

whereRs is the position vector of the center of thes-th
contour, andr s

l is the position vector of thel -th point on
the interface of this contour with its origin at the center
of the contour, andns is the number of its boundary
points. Then the union

N⋃
s= 1

Ds

is the solid phase within the model system. A time-
dependent microstructure will be mapped onto a 2-D
by three discrete matrixes: the integer matrix‖ei j ‖n × m,
where the value of the elementei j indicates the phase
present at the point (i, j ), so that

ei j =
{

0 for liquid phase
>0 for solid phase, i.e. 1, 2, . . . , N

and two real matrixes for the concentration‖ci j ‖n × m

and the flux‖ fi j ‖n × m. Thus, its domain and the topo-
logical information concerning contour neighbors char-
acterize each contour.

If

So = {(Rs, r s) | (Rs, r s) ∈ Ds
o, s = 1, 2, . . . , N}

is the initial structure of the model system, and

St = {(Rs, r s) | (Rs, r s) ∈ Ds
t , s = 1, 2, . . . , N}

is the structure of contours after sintering (simulation)
time t , then the transformationSo → St describes the
liquid phase sintering of the model system.

2.1. Initial model system
The starting model system is characterized by a con-
tour size distribution that is generated by random gen-
eration (the standard normal distribution function) for
given contour size region [rmin, rmax]. In this genera-
tion, all radii generated out of defined size region will
be ignored. The center positions of the contours are
randomly distributed (“gravity free” and “drop-freeze”
methodology) without contour intersection and exclud-

(a)

(b)

Figure 1 Simulation of packing process: (a) initial monosized contour
distribution generated by random generator, (b) packed model system
with displayed steps of packing contours numbered with8 and9.

ing all those that are within any previously packed con-
tours (Fig. 1a). Notice that for this random generating
procedure, one can used any specified size distribution.

The influence of particle shape on packing efficiency
has been recognized for a long time. However, most of
the studies deal with the packing of spherical or nearly
spherical particles, whereas the studies of packing of
nonspherical particle mixture appear to be limited.

The packing process assumes that if there is good
wetting between liquid and solid phase, solid particles
will rearrange themselves under the action of surface
tension forces, producing a more stable packing. The
method applied for the simulation of the initial pack-
ing process (PP0) is the settling procedure in which
contours are subjected to a simulated gravity field: the
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contour falls under gravity and slides down over the al-
ready settled contours. This procedure will be applied
to each contour starting with the contour having the
lowest position in the vertical direction of experimen-
tal region (Fig. 1b). To avoid wall effects, this proce-
dure was applied so that packed domains were within
an interior region that has its boundary at least a few`

(1 to 2) inside the outer boundary wall of experimental
region.

It is assumed that the bottom wall and walls on both
sides of the experimental region are stationary and that
the upper wall is the moving wall. Now a new (final)
experimental region in which the upper wall position is
defined by the highest contour position can be defined.

The number and the sizes of contours and its cen-
ter positions characterize the initial model structure.
The key parameters, such as contact and dihedral an-
gle, amount of liquid phase, the minimal thickness of
the liquid layer, and distribution of the liquid phase
between the solid grains are all directly defined by or
calculated from the model system structure.

2.2. Solution-precipitation process
The main characteristic of the solution-precipitation
process is that the smaller solid grains dissolve at
solid/liquid interface (thermodynamically unstable),
diffuse through the liquid, and precipitate on the larger
grains.

A system consisting of a dispersion of spherical parti-
cles with different radii in a liquid (Fig. 2a) in which the

(a)

(b)

Figure 2 Contour coarsening modeling: (a) model system of six con-
tours of different radii, (b) corresponding (normalized) concentration
profile of liquid along thex-axis (solid line). The horizontal line marks
critical concentration of liquid that corresponds to the critical particle
sizer ∗.

solid phase has some solubility is assumed. Thus, the
concentration of the dissolved solid,C, around a parti-
cle of radiusr is given by the Gibbs-Thomson equation

ln

(
C

Co

)
= 2γslÄ

kT
· 1

r
(1)

whereCo is the equilibrium concentration of liquid in
contact with the flat solid,γsl is the solid/liquid interfa-
cial energy,Ä is the molecular volume of the solid, and
kT has its usual meaning. If1C = C − Co is small,
then Equation 1 becomes

1C = Co · 2γsl Ä

kT
· 1

r
(2)

This equation is not valid for a very small particle be-
cause1C becomes infinite as its radius goes to zero.
However, the number of the small particles at any sim-
ulation time is sufficiently small so that Equation 2 can
be assumed to be valid for all particles.

Notice that after simulation timet > 0, most of the
particles are no longer circular because the diffusion
field around and between particles becomes highly
asymmetric.

It can be seen from Equation 2 that the concentration
at an interface with high curvature will be above that at
an interface with low curvature, thus a higher concen-
tration around a smaller particle gives rise to a net flux
of matter from the smaller to the larger one (Fig. 2b). If
DL is the concentration independent diffusivity of the
solid in the liquid, then the flux vector is

J = −DL∇C (3)

Applying Equation 3 at boundary points of solid in-
terface, the effects of the dissolution and precipitation
processes can be computed.

This process is accompanied by considerable coars-
ening and by changes in the shape of particles. The sizes
of the particles and their locations change as simulation
time increases: smaller particles dissolve, and the dis-
solving material deposits on the large particles in such
a way that grain shape accommodation occurs. Thus,
the particles can pack more efficiently because of a
nonspherical–symmetric diffusion field. The space left
by the small dissolved particles is recovered by pack-
ing process. This process (PP1) is also modeled by the
settling procedure in which contours settle toward the
center of experimental region. This procedure can be
described by contour motion

Ds → D′s,

whereD′s is the domain position ofs-th contour after
partially settling. The new domain must be restricted to
those regions not already occupied by other domains,
for example,

D′s ∩ D j = Ø ( j = 1, 2, . . . , N; s 6= j ).

Such settling process brings all contours close one to
another with the contour distance not less than the min-
imal thickness of liquid layer,̀.
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The initial liquid concentration can be taken as the
concentration of pure liquid with no dissolved solid.
However, because the dissolution process starts very
quickly after the additive melts, the same results can
be obtained with equilibrium liquid concentration or
with minimal liquid/solid interface concentration as
the initial concentration [3]. The model assumes that
the liquid phase is uniformly distributed into a model
system.

The boundary composition is not constant during
simulation. It changes with time as a function of dif-
fusion in the liquid and of amount of dissolved solid
phase [4]: boundary concentration can increase or de-
crease but the material’s flow outside the experimen-
tal region is not allowed. Time dependent boundary
concentration is especially important for a particle that
is located near the edge of the experimental region to
avoid the effects of finite model system size. When
the amount of liquid is relatively small and is located
in the contact region only between the solid particles,
the boundary concentration can be defined as given
in [5].

2.3. Contour coarsening
If the solid particles are dispersed in the liquid phase, the
grain coarsening is called Ostwald ripening process. If
the solid phase forms a dense polyhedral grain structure,
grain growth is due by grain boundary migration that
is characterized by dissolution of smaller grains in the
liquid, by its transportation through the liquid, and by
precipitation on the larger ones.

Grain coarsening is a typical multibody free
boundary problem in which the domains alter their
morphologies in response to the diffusion field. After
solution-precipitation, the particles grow in supersat-
urated liquid phase, and after the supersaturation be-
comes small, large particles start to grow at the expense
of small particles. This tendency for particles to grow
or to shrink depends on the size of particles relative to
a critical particle size (zero-growth, i.e., the radius of
critical particle for whichdr/dt = 0), r ∗ [6]. For re-
action controlled growthr ∗ = 9〈r 〉/8, and for diffusion
controlled growth,r ∗ = 〈r 〉, where〈r 〉 is the arithmetic
mean particle size.

In that sense, the theoretical basis for modeling of
this process is the assumption that at any given mo-
ment the contours smaller than a critical contour size
will dissolve, surrounding themselves with a zone of
excess solute that will migrate to the contours larger
thanr ∗, and these therefore grow. Notice that the crit-
ical contour size is time-dependent, i.e.,r ∗(t). For the
system shown in Fig. 2a, assumed reaction controlled
growth r ∗ = 12.4 µm, dissolved material from four
smallest contours precipitates on the two largest con-
tours (Fig. 2b) during contour coarsening process.

This simulation method assumes that the liquid vol-
ume change depends on solution and precipitation
processes. After cooling, liquid forms a glassy grain
boundary phase with no solid solution, no crystalliza-
tion, and no evaporation. A similar sintering process
generally characterizes most of the systems.

3. Process simulation
Mass diffusion outside the particles is assumed to be the
only mass transfer process. Diffusion through the liquid
phase is defined by the partial differential equation of
the parabolic type

∂C

∂t
= DL · ∇2C (4)

If C = C(x, y, t), Equation 4 can be replaced by

∂C

∂t
= DL ·

(
∂2C

∂x2
+ ∂2C

∂y2

)
(5)

For the computation of time-dependent concentration
of liquid phase (the numerical solution of Equation 5)
finite-difference technique will be used.

An experimental domain of a rectangular shape that
is partitioned into subregions by a mesh is assumed.
There are the two distance coordinatesx and y, and
time t as independent variables, and that the respective
grid spacings are1x, 1y, and1t . Subscriptsi , j , and
k may then be used to denote that space point having
coordinatesi 1x, j 1y, andk1t , so called the grid-point
(i, j, k). For an approximate solution of the Equation 5,
the classical five points approximation (the Schmidt
method) can be used [7]

ci, j,k+1 = (1 − 2λ1 − 2λ2)ci, j,k

+ λ1(ci +1, j,k + ci −1, j,k)

+ λ2(ci, j +1,k + ci, j −1,k)

(i = 2, 3, . . . , n − 1; j = 2, 3, . . . , m − 1;

k = 0, 1, . . .) (6)

whereλ1 = DL1t/(1x)2, andλ1 = DL1t/(1y)2. If all
theci, j,k at the time leveltk are known,ci, j,k+1 at the
time level tk+1 can be calculated for alli and j di-
rectly using Equation 6. For reasons of computational
stability, values of distance and time interval (1x, 1y,
and1t) must also be taken so thatλ1 + λ2 does not
exceed 0.5. The defined model assumes the contours’
surfaces that have discretized with equal-sized squares.
The same discretization was used for approximating the
curvature at the contour’s surface.

With the above mentioned facts as the starting as-
sumption, the simulation method (the defined computer
procedure) will be as follows:

A Definition of model system for the given experimen-
tal region, forN, [rmin, rmax] and`.

If (xs
c, ys

c) andrs are the center position and the initial
radius of thes-th contour, respectively, then the solid
phase of the model system is

N⋃
s= 1

{
(xi , yj )

∣∣(xi − xs
c

)2 + (
yj − ys

c

)2 ≤ r 2
s

}
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with the contours’ boundary points

Ds = {
(xi , yj )

∣∣ (xi − xs
c

)2 + (
yj − ys

c

)2 = r 2
s

}
(s = 1, 2, . . . , N)

After packing procedure PP0, all contours of the initial
model structure will be numbered and recorded.

B Process simulation

B.1Computation of the diffusion field around the model
system contours, i.e. computation ofci, j,k+1 from ci, j,k

in all points of liquid, by applying Equation 6

After simulation timet > 0, most of the contours will
no longer be circular because the diffusion field around
and between contours is highly asymmetric. For 2-D
simulation and for the very short simulation time, one
can assume that the contours are approximately circu-
lar, thus the radius ofs-th contour can be computed
by

rs =
√

As/π,

whereAs is the area of the contour. For this case, the
contour’s area can be directly obtained by summing the
number of mesh points within the contour. However, be-
cause each contour is a closed polygon approximated
by ns line segments, the area within a 2-D curve en-
closed byns line segments is [8]

As = 1

2

{(
xs

1ys
2 + xs

2ys
3 + · · · + xs

ns−1ys
ns

+ xs
ns

ys
1

)
− (

xs
2ys

1 + xs
3ys

2 + · · · + xs
ns

ys
ns−1 + xs

1ys
ns

)}
(s = 1, 2, . . . , N) (7)

For a long simulation time and for the Gibbs-Thomson
boundary condition for the solid-liquid interface of the
form

C
(
r s

j

) ∼ κ
(
r s

j

)
for r s

j on Ds (8)

whereκ(r s
j ) is the curvature atr s

j , the most impor-
tant numerical consideration in performing an accu-
rate computation is the determination of the curvature
of noncircular contour. In this sense, the better way
would be to calculate the local curvature numerically,
for example, using the interpolation functions at each
boundary point separately. If one needs a smooth func-
tion for describing the contour-boundaries, then a cubic
polynomial could be the simplest function of this type,
as recognized by Saetre and Ryum [9] and applied by
Cocks and Gill [10]. In this simulation method the cur-
vature at each point on domainDs was computed by
fitting a quadratic polynomial to the point and its two
neighbors. Notice that for a square mesh, a sharp cur-
vature on contour-boundary requires a very fine mesh.

B.2 Computation of the flux at the boundary points
Ds (s = 1, 2, . . . , N )

The flux through the finite element (1x × 1y) of solid
phase boundary point (xi , yj ) is

Ji, j = Jx
i, j + Jy

i, j , (9)

where Equation 9 is two-dimensional case of Equa-
tion 3. Because the process model is based on the as-
sumption that solution, diffusion, and precipitation pro-
cesses take place in the liquid phase and that solid–solid
interactions are not allowed, then

Jx
i, j = −DL ·

(
ci, j − ci +1, j

1x
· δi +1, j

+ ci, j − ci −1, j

1x
· δi −1, j

)

Jy
i, j = −DL ·

(
ci, j − ci, j +1

1y
· δi, j +1

+ ci, j − ci, j −1

1y
· δi, j −1

)
where

δi, j =
{

1 if (i, j ) ∈ liquid phase
0 if (i, j ) ∈ solid phase

B.3Computation of mass flow,d M/dt, in all boundary
points of solid phase

B.4Determination of a new topology of the model sys-
tem: the evolution of the centers of mass as a reference
point for model system contours and the domains’ po-
sition, i.e.

Ds = {
Rs(t); r s

1(t), r s
2(t), . . . , r s

ns
(t)

}
(s = 1, 2, . . . , N).

During the simulation process the simulator continu-
ously checks for possible new contours’ position and
new geometry. All topological information is recorded
and saved for each time interval for the next analysis
and computation.

The domainsDs(t) are stored and each successive
new domains’ position calculated as a function of time,
i.e., the domains’ definition updated by

Ds(t + 1t) = Ds(t) + 1Ds(1t) (s = 1, 2, . . . , N)

where new subdomain (domains’ increment)1Ds(1t)
is a result of current dissolution effects (d M/dt < 0
or a negative growth rate,d As/dt < 0) and/or precip-
itation effects (d M/dt > 0 or a positive growth rate,
d As/dt > 0), as well as new domains’ locations be-
cause contours will rearrange themselves under the ac-
tion of surface tension forces producing a more stable
packing (PP1). As shown in Fig. 3, whereni, j is the
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Figure 3 Schematic diagram illustrating solution-precipitation process
direction.

normal vector to the contour, the dissolution is directed
from the contour toward the liquid phase, and the pre-
cipitation toward the contour. For the latter, each new
boundary point would be located with respect to the
old boundary point and corresponding line segments.
A suitable direction for the definition of the new point
could be determined either by concentration gradient or
by random generation. Because a new point’s positions
are very close to the old ones, they would be defined in
an approximately radial direction.

From time to time it is required to make the elemen-
tary topological transformation: as a result of the disso-
lution process a contour smaller than the finite element
of mesh (1x × 1y, i.e. four boundary points) will be
remove from the system. The very small contours dis-
appear by giving their mass to surrounding contours.
Because the times required to diffuse these contours
into the liquid are very small compared with the time
interval1t , it is expected that the change of the diffu-
sion field of the surrounding contours during the sim-
ulation time1t is not greatly affected by the removed
contours.

This procedure has been developed for a 2-D model
system, but can be easily extended to include a third
dimension. The fact is, however, that the topological
changes that occur in 3-D are more complex than those
that occur in 2-D.

4. Results and discussion
The present simulation method and the computer pro-
gram itself were tested in order to conduct a study of
grain boundary migration during liquid phase sintering
of an Al2O3-glass system. Such a system is relatively
well characterized. The observation that the alumina–
glass system has a continuous glassy boundary [11–13]
indicates good wetting. Hence, it can be used as a model
system.

An initial model system (Fig. 4a) was obtained by ap-
plying random generating methodology and assuming

(a)

(b)

Figure 4 Geometry of investigated model system for Al2O3—glass sys-
tem: (a) before packing, (b) after packing.

that for the polycrystalline Al2O3, the particle size
range was 5–10µm with initial average particle ra-
dius 〈ro〉 = 7.05 µm inside the experimental region
120µm× 150µm. The next model shown in Fig. 4b
was obtained during the packing process PP0 (the min-
imal thickness of the liquid layer was̀= 0.1 µm, and
the experimental region 120µm× 100µm). The initial
surface area fraction of the solid phase after the pack-
ing process is rather difficult to estimate and is lower
than expected (66%) because of the wall effect during
packing. Therefore, the narrower experimental region
(dashed box on Fig. 4b) in which the surface area frac-
tion of solid is 75% will be considered. Because the
solution-precipitation model and contour coarsening
model make no assumption about the starting model
system, the packed system obtained by PP0 (Fig. 4b)
has been used as the starting model system.
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TABLE I Values used in computer simulation of grain boundary migration during liquid phase sintering of an Al2O3–glass System

Variable Description Values Reference

Co Equilibrium concentration of liquid 29.00 mol% 15
DL Diffusivity of the solid in the liquid 1× 10−10 m2/s 16
Ä Molecular volume of the solid 4.25× 10−29 m3 (Al2O3) —
γsl Solid/liquid interfacial energy 0.5 J/m2 17
T Sintering temperature 1873 K —

For the Al2O3–magnesium aluminosilicate glass sys-
tem with an equilibrium composition of liquid 14.6
MgO, 44.1 Al2O3, and 41.3 SiO2, in wt % [14], the
data given in Table I were used. On the basis of the
time exponent and activation energy obtained in their
experiments, Hamano and Miura [18] and Kalita [19]
proposed that densification of an alumina–glass system
is controlled by diffusion during solution-precipitation.
Kwon and Messing [14] have analyzed densification of
this system also. Their analysis and observations con-
sistently supported interface reaction-controlled den-
sification during solution-precipitation. In the present
simulation the latter results—that the coarsening will
be controlled by the interface reaction—were used. All
calculations were performed on 256× 256 mesh points.
The larger mesh would improve the accuracy of the
computation, but this change requires a super comput-
ing platform because increasing the mesh size (i.e., de-
creasing the unit length of the mesh) increases the cal-
culation time tremendously.

In this section, a selection of computed results is pre-
sented to illustrate the application of the defined sim-
ulation models for the solution-precipitation processes
and the contour coarsening process. The initial concen-
tration of liquid phase was as shown in Fig. 5. The flat
surfaces in Fig. 5c represent the solid phase where the
boundary concentrations (8) were extended across the
entire domains because the contours were initially cir-
cular. However, for the computation of the evolution of
microstructure only the boundary points’ concentration
C(r s

j ) is of interest.
After a few minutes, solution-diffusion-precipitation

processes are just beginning to occur along the sol-
id/liquid boundary interfaces. The driving force of those
processes is not the difference in the contour size, but
the concentration gradient between solid and liquid
phases. Smaller contours have the highest concentra-
tion levels, and they dissolve in the liquid matrix. The
fine contours will disappear at the start of coarsening,
resulting in an increase in mean size. Dissolved atoms
diffuse through the liquid layer or through the liquid
matrix, and precipitate on the larger contours. During
this stage, the liquid thickness remains nearly constant
because dissolution and precipitation simultaneously
take place over short distances. The smaller dissolv-
ing contours give way to new packing of small and
large contours. The smaller contours tend to be prefer-
entially located near the large contours, as suggested in
Ref. [20], because the large contours always grow, re-
sulting in the surrounding contours being small. Further
morphological changes may occur by large contours
growing during contour coarsening.

Fig. 6a and 6b show the shape and location of the
center of the model system contours. From simula-
tion results at various times 20 and 40 min, it can be
seen that morphological evolution and migration de-
pend on the contour’s location. In the present simula-
tion, the small contours tend to be located near the large
contours during PP1 packing process. The large con-
tours with small contours as neighbors have extensive
grain boundary movement because they have the fastest
growth (e.g., contours numbered with1 and 2 with
corresponding dashed regions shown in Fig. 6). This
means that small contours, which are very close to big-
ger ones, dissolve very quickly and will disappear. The
growth of larger contours (the precipitated areas) does
not occur uniformly around the contours. The largest
shape distortion in center-to-center direction is a result
of intercontour diffusion interactions at relatively small
intercontour distances (large concentration gradient). It
can be seen also that a diffusion field surrounding some
contours has no influence on the precipitation process
because of relatively large distances between contours.
Such contours dissolve very slowly. These changes in
the microstructure are more visible on Fig. 6b. After
80 min (Fig. 7), most of the smallest contours have dis-
appeared, some of the smaller contours are still dissolv-
ing, and the bigger ones are growing only. Evident is the
decrease in the number of contours and an increase in
the average contour’s size with simulation time. By such
model system evolution, it can be concluded that al-
though the liquid layer thickness slowly increases with
time, which will certainly alter the flux of dissolving
material, the average liquid thickness remains approx-
imately constant as a result of a moving grain bound-
ary. All of these processes will be ended by completely
reaching a uniform concentration distribution.

Figure 8a shows the dependence of normalized (by
the initial average contour radius〈ro〉) contour radius
on simulation time, where time dependent contour radii
were calculated through

rs(t) = 1

ns

ns∑
i = 1

r s
i (t) (s = 1, 2, . . . , N)

as an approximation. Similar dependence can be
obtained applying expression (7) for time dependent
contour areaAs(t) in 2-D section (Fig. 8b), where〈Ao〉
is the initial average contour area. It can be seen that
only the largest contours grow, the small contours dis-
solve and disappear, and contours with radii close to the
average (approximately) do not change size. Further,
as a result of the solution-precipitation process, and
the subsequent contour coarsening process, some of the
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(a)

(b)

(c)

Figure 5 Initial concentration profile of liquid phase: (a) initial boundary
concentration of liquid alongy-axis, (b) initial boundary concentration
of liquid alongx-axis, (c) 3-D initial concentration of liquid and solid
(the flat surfaces represent the solid phase). For this figure only, the mesh
size was 65× 65.

(a)

(b)

Figure 6 Simulation results of microstructural changes (dashed circular
lines denote starting model geometry): (a) after 20 min, (b) after 40 min.

Figure 7 Simulation results of microstructural changes after 80 min.

contours with initial radius close to the average radius
show a tendency toward dissolution and precipitation
at the same time: such contours grow on one side and
dissolve on the other. Fig. 9a shows normalized contour

790



           
P1: PKP/KGI P2: PKP 1067-97 January 5, 1999 13:0

(a)

(b)

Figure 8 Contour size vs. simulation time: (a) the normalized (by the
initial average contour radius) contour’ radius vs. simulation time, (b)
the normalized (by the initial average contour area) contour area verses
simulation time.

radius as a function of time, where the average radius
〈r 〉 is also a function of time, i.e.,

〈r (t)〉 = 1

N

N∑
s= 1

rs(t)

Fig. 9b shows normalized contour area as a function
of time, where the average contour area〈A〉 is also a
function of time, i.e.,

〈A(t)〉 = 1

N

N∑
s= 1

As(t)

The contours with radius smaller than average one have
the negative slope curve and opposite. It can be seen
that the latter ones, and for sufficiently long simulation
time the larger contours, have the slopes curve approxi-
mately equal zero (i.e., these contours grow at the same
rate as the average). A similar result was obtained by
Voorhees and Glicksman [21].

A general conclusion can be drawn that the largest
contours grow at the expense of the surrounding smaller
contours. Because of this conclusion, the distances be-

(a)

(b)

Figure 9 Contour size vs. simulation time: (a) the normalized (by the
time-dependent average contour radius) contour’ radius vs. simulation
time, (b) the normalized (by the time-dependent average contour area)
contour area verses simulation time.

tween the interfaces of the large contours that are lo-
cated near one another decrease with simulation time.
However, when small contours have disappeared, some
large contours can grow at the expense of the others.
This process probably depends on the size difference
between these large contours. As Akaiwa and Voorhees
have concluded [22], this process must be fairly rare,
for it depends on two large contours of nearly the same
size being located near each other.

It can be seen also that during coarsening, the sizes
of contours and their centers’ locations change with
simulation time. The global (xc, yc) dependence shows
that most of the contours have a rigid body motion. The
migration of the contours is a result of the nonuniform
concentration gradient over their surfaces. For some
contours this migration can be significant inside the ex-
perimental region. Even small changes in the locations
of the contours relative to one another can have large ef-
fects on the resultant morphological evolution of model
system. The analysis of the contour center locations in
bothx andy directions versus sintering time is shown
in Figs 10 and 11.

Fig. 10 shows the center position normalized by the
initial average contour radius〈ro〉 as a function of
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Figure 10 The center positions of the contour as a function of simulation
time using (x1

co, y1
co) and (x2

co, y2
co) as the initial center positions for the

contour1 and contour2 respectively.

Figure 11 The average center position of the contour as a function of
simulation time using (xco, yco) as the initial center position vectors.

simulation time. The positions (x1
co, y1

co) and (x2
co, y2

co)
are chosen as the initial center positions for the contour
1 and contour2, respectively. As it can be seen from
Figs 6 and 7, both contours grow with time. At the be-
ginning, the smaller contours that are very close to the
contour2 dissolve very quickly; therefore, starting mi-
gration of this contour is significant and larger than
the migration of the contour1. For the larger simula-
tion time, the migration distances for the two contours
depend on surrounding contours and the correspond-
ing nonuniform concentration gradient. A similar con-
clusion can be drawn for the average time-dependent
center positions for all contours of the model system
(Fig. 11). The total migration distance for the model
system is 1.101·〈ro〉, or approximately the initial radius
of the contour.

From the examination of microstructural changes
(Fig. 6), it can be concluded that the contours princi-
pally assume a rounded shape because the amount of
liquid is fairly large. However, in a late stage of liquid
phase sintering, it can be assumed (Fig. 7) that some of

Figure 12 The dependence of the average shape factor on the simulation
time.

the contour contacts can be approximately flattened, as
it has been observed in Ref. [14]. Because the present
simulation is performed without the shape restriction,
no overlapping contours were found.

If Ls is the length of the interface ons-th contour,
then the shape factor can be defined by

Ps ≡ Ls

2πrs
=

{
1 for a circular contour

>1 for a noncircular contour

This factor can be used for estimation of the degree of
noncircularity of the model system contours. The aver-
age shape factor versus simulation time for our model
experiment is shown in Fig. 12. The starting value of
〈P〉 is 1 because all contours are initially circular. It
can be seen that this factor is time-dependent with the
tendency to approach a constant value for a longer sim-
ulation time. Akaiwa and Meiron [23] studied the late
stage of nucleation and Ostwald ripening in two dimen-
sions using a boundary integral formulation. Although
the numerical model in the present simulation is quite
different from their analytical and numerical models,
time-dependent shape factor function and model sys-
tem contour configuration are very similar.

The dominant process through solution-precipitation
and grain coarsening is grain growth. The numerical
model for the grain growth similar to the model [24] can
be used to predict how the grain size of a microstructure
develops during sintering. The results of grain growth
versus sintering time for the two large contours1 and
2 are plotted on Fig. 13. The discrete values of growth
were computed as average radius growth values for all
boundary points of contour. It can be seen that both
contours have the similar growth, which rapidly in-
creases with time. For a longer simulation time, the
contour1 almost has no small contours as neighbors,
thus the growth rate slowly approaches its limiting
value. For contour2, there are a few small contours
as neighbors, thus its growth rate slowly increases. The
average growth for “growing contours” of the model
system is also plotted on Fig. 13. By comparing these
three curves, it can be concluded that “growing con-
tours” grow similarly to contour1, with the tendency to
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Figure 13 Simulated average radius growth vs. simulation time for con-
tours1 and2, and for “growing contours.”

approach a constant value as time increases. Its lower
average growth is a result of the fact that a diffusion
field surrounding some contours has not the same in-
fluence on the solution-precipitation process because
of different distances between contours. Fig. 14 shows
the average growth for all contours. For a short simu-
lation time, small contours dissolve very quickly, and
larger contours grow relatively slowly. Therefore, dis-
solution effect is greater than precipitation effect. Dur-
ing sintering, most of small contours will disappear
resulting in an increase in average contour radius (i.e.
average contour area). It is clear that after long sintering
time, the growth should decrease because of a decreas-
ing amount of solid phase and increasing intercontour
distances.

Future modification of the simulation model should
include a more realistic packing process by taking into
account the fairly small amount of liquid phase, and
that the particles are surrounded by small and large
pores. For such a rigorous simulation model, some of
the required information already exists, but clearly full
constitutive description must await further studies of
liquid phase sintering.

Figure 14 Average radius (area) growth verses simulation time for “all
contours.”

5. Conclusions
This paper outlines a computer-based method for sim-
ulation of grain boundary migration on liquid/solid
interfaces during liquid phase sintering. The theoret-
ical basis of such analysis is general and applicable
to any multicomponent ceramic system. The simula-
tion method developed is based on the defined sub-
models for initial model system definition, solution-
precipitation process, and grain coarsening process.
With the initial model system based on randomly dis-
tributed particles, the packing processes PP0 and PP1
were simulated by a settling procedure in which con-
tours are settled on the bottom of the experimental re-
gion, simulating gravity, and toward the center of exper-
imental region, respectively. The solution-precipitation
and grain coarsening were modeled based on the corre-
sponding model system, which restructures itself so that
larger particles can grow by transfer of dissolved atoms
through the liquid phase. Such a simulation method can
be used to assist in analysis of experimental data and in
the optimization of sintering in the presence of a liquid
phase.
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